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Joule heating in Boltzmann theory of metals
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Boltzmann theory deals with the quasiparticle distributions FK for electrons and NQ for phonons. It is difficult
to reconcile the common situation of “steady state” (where distributions are out of equilibrium but carry steady
charge current �j) and Joule heating �j · �E . This paper offers elementary clarification. The resolution is simplest if
a true steady state is abandoned.

DOI: 10.1103/PhysRevB.102.165134

I. INTRODUCTION

Joule heat is so well known that an explanation is
needed for this paper. Boltzmann theory is well described
in textbooks, the old master being Ziman [1]. The the-
ory uses quasiparticles as defined by Landau. Electron
quasiparticles have crystal quantum numbers K = (�k, n, σ )
and phonons have quantum numbers Q = (�q, j). These quasi-
particle states are not eigenstates of electron and phonon
Hamiltonians. Instead, they have thermal shifts and lifetime
broadening, as described by Green’s function theories. The
wave vectors �k and �q are in one-to-one correspondence with
those of the eigenstates of effective Hamiltonians, and are
defined for finite systems by using periodic boundary con-
ditions. Boltzmann theory gives a very successful theory of
how the distributions FK and NQ deviate from equilibrium
Fermi-Dirac fK and Bose-Einstein nQ, and how they evolve
in time under the influence of applied external fields. In recent
years, computational theory has made important advances in
using Boltzmann theory to predict linear transport properties
of crystalline matter (see for example, Ref. [2] for phonons
and Ref. [3] for electrons) and, less often, nonlinear effects
[4].

In this paper the field will be �E . Most often, but not
necessarily, it is constant in time and space. When �E is con-
stant, one expects a steady current �j. But then Joule heat
�j · �E necessarily accompanies the current. In the rigorous
quasiparticle picture, the system is closed, so its energy is
increasing in time. This confusion has bothered many of us.
It has been correctly addressed in previous literature [5,6].
The main result in this paper is to provide a simple clarifying
update. The clarification is that this deviation from steady state
does not occur to first order in �E ; �j · �E is second and higher
order. When one wants only first-order effects, Joule heating
is omitted, but a nonequilibrium temperature shift �T can be
included. The electron distribution function can be expanded
in powers of E and �T : FK = ∑

K F (n)
K where F (0)

K = fK and
F (n)

K = ∑n
m=0 an,mEn−m�T m. The first-order correction obeys
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the steady-state condition ∂F (1)
K /∂t = 0. To study higher-

order effects, the system being closed, it is necessary to have
∂F (n)

K /∂t �= 0 for n > 1. This will be explained in subsequent
sections. This is not a new idea. It was mentioned in passing
by Greenwood [7] in 1958. Here we provide clarification that
Greenwood omitted.

Observable effects of Joule heat often happen in small
systems which are coupled to their environment [8,9]. The
coupling is a challenge for Boltzmann theory. We believe
that there is no rigorous resolution, but satisfactory phe-
nomenological coupling to environment is often available.
An example is studies of nonlinear I-V behavior of carbon
nanotubes [10]. Another situation where Joule heat needs to
be carefully examined is current-driven metal-insulator tran-
sitions [11–16]. In some experiments, metal/insulator phase
boundaries are observed to move in time, which requires
keeping nonzero ∂F (n)

K /∂t for n > 1 [11,13,16].

II. SIMPLEST VERSION

Consider a long metallic wire (length L). Voltage �V is
applied through electrodes at the two ends. In the interior,
uniform current �j = σ �E flows in response to a uniform in-
ternal field E ≈ −�V/L. The time rate of work done per unit
volume by the internal E field is the Joule heat �j · �E = σE2.
Suppose the wire is suspended in vacuum between the elec-
trodes. Heat can escape by conduction to the electrodes and by
radiation to vacuum. A deeper discussion is postponed until
the last section. Except at high T , radiation is inefficient. If the
wire has low enough thermal conductance that the conductive
heat escape can be ignored, then the wire is not in steady state.
Its temperature increases in time, dT/dt = �j · �E/C where C
is the heat capacity. This is not normally included in micro-
scopic linear theories of conductivity, where Joule heat is not
included. So where in Boltmann theory does the Joule heat
reside?

For a homogeneous long wire, the Boltzmann equation is

∂FK

∂t
= −�̇k · ∂FK

∂�k +
(

dFK

dt

)
coll

. (1)

The electron distribution function FK deviates from the
Fermi-Dirac distribution fK . The acceleration term uses the
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semiclassical equation h̄�̇k = −e �E where E = Eext is the
uniform applied field. The rigorous collision term is a com-
plicated nonlinear function of FK ′ and NQ. It is normal, and
usually satisfactory, to assume that the phonons are kept in
equilibrium by anharmonic scattering, so that the collision
term for electrons depends on nQ but not on NQ − nQ. This de-
couples the electron Boltzmann equation (1) from the phonon
Boltzmann equation. The next section will discuss the correct
coupled equations.

The electron quasiparticle energy is �u = ∑
K εK FK ,

where � is the sample volume. The time rate of change of
energy density is therefore

∂u

∂t
= 1

�

∑
K

εK
∂FK

∂t

= 1

�

∑
K

εK
∂FK

∂�k
eE

h̄
+ 1

�

∑
K

εK

(
dFK

dt

)
coll

. (2)

The collision term on the right sums rigorously to zero by
energy conservation. The acceleration term can be simplified
by integrating by parts,

∂u

∂t
= − e

�

∑
K

�vK FK · �E = �j · �E . (3)

This uses the quasiparticle (or Boltzmann) definition of
current, �j = −(e/�)

∑
K �vK FK . Joule heating is therefore rig-

orously contained in Boltzmann theory. Importantly, no linear
approximation is made; the current �j is not constrained to the
linear form σ �E .

III. WITH PHONONS AND NONZERO �∇T

Here is an essentially complete version of Boltzmann the-
ory,

∂FK

∂t
= −�̇k · ∂FK

∂�k − �̇rel · ∂FK

∂�r + CK ({F, N}),

∂NQ

∂t
= −�̇rph · ∂NQ

∂�r + CQ({F, N}). (4)

There is no acceleration term for phonons. Both distributions
can be spatially inhomogeneous, in which case their evolution
contains drift at velocity �̇rel = �vK or �̇rph = �vQ, where �vK =
∂εK/∂�k is the electron group velocity, and �vQ = ∂ωQ/∂ �q is
the phonon group velocity. Factors of h̄ are omitted when
confusion is unlikely. The collision terms (dFK/dt )coll =
CK ({F, N}) and (dNQ/dt )coll = CQ({F, N}) contain electron-
phonon interactions, which is why they depend on both
F and N . They also include electron-electron (Coulomb)
and phonon-phonon (anharmonic) interactions, and defect
scattering. Boundary scattering can be included in a semiphe-
nomenological way. They conserve charge density n and
energy density u,(

dn

dt

)
coll

= − e

�

∑
K

CK ({F, N}) = 0, (5)

(
du

dt

)
coll

= 1

�

∑
K

εKCK ({F, N}) + 1

�

∑
Q

ωQCQ({F, N})

= 0. (6)

Charge density conservation for the short version (1) of the
Boltzmann equation is just ∂n/∂t = 0, because the accelera-

tion part (1/�)
∑

K
�̇k∂FK/∂�k integrates to zero. When drift is

added, the answer is

∂n

∂t
= −�∇ · �j, (7)

because the spatial gradient ∂/∂�r in Eq. (4) can be moved
outside the K integration. Similarly, energy conservation be-
comes

du

dt
= �j · �E − �∇ · �ju, (8)

where the energy current density is

�ju = 1

�

∑
K

εK �vK FK + 1

�

∑
Q

ωQ�vQNQ. (9)

These conservation laws are exact in classical physics, and
statistically exact in quantum mechanics. The Boltzmann de-
scription is not exact; it uses the quasiparticle approximation
for n, u, �j, and �ju. Nevertheless, it does obey exact conserva-
tion laws.

IV. FIRST ORDER IN �E AND �∇T

To study charge current, we focus on electrons, and assume
that the scattering term in Eq. (4) for electrons, CK ({F, N}),
can be approximated by CK ({F, n}) because of anharmonic
scattering. The distribution function FK relaxes toward the
equilibrium Fermi-Dirac distribution fK . The deviation from
equilibrium is to be computed to first order in E . The lin-
earized version of Eq. (4) is

0 = e �E · �vK
∂ fK

∂εK
− �vK · ∂ fK

∂T
�∇T −

∑
K ′

C(1)
KK ′F

(1)
K ′ , (10)

where −C(1)
KK ′F

(1)
K ′ is the linearized version of the scattering

operator CK ({F, n}). To first order in a �E + b �∇T , the system
has a time-independent steady state ∂F (1)

K /∂t = 0. The higher-
order pieces of the acceleration and drift terms proportional to
∂F (n)

K /∂�k and ∂F (n)
K /∂�r are dropped because, containing n − 1

factors of a �E + b �∇T , they give contributions higher than first
order. The linearized collision operator Ĉ(1) scatters electrons
from K to K ′, conserving particle density and energy density:∑

KK ′
C(1)

KK ′F
(1)

K ′ = 0 and
∑
KK ′

εKC(1)
KK ′F

(1)
K ′ = 0. (11)

These hold for any deviation F (1)
K , which requires

∑
K C(1)

KK ′ =
0 and

∑
K εKC(1)

KK ′ = 0. In other words, 1 and εK are null left
eigenvectors of Ĉ(1). The collision operator is real but not
symmetric. All other eigenvalues are greater than 0, except
these deriving from conservation laws. In the space orthogonal
to 1 and εK , the matrix C(1)

KK ′ has a well-defined inverse. The
solution is

F (1)
K = [C(1)]−1

KK ′

[
e �E · �vK ′

∂ fK ′

∂εK ′
− �vK ′

∂ fK ′

∂T
�∇T

]
. (12)

The electrical current, to first order in �E , is then

�j = σ �E + σS �∇T . (13)
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The conductivity σ = (∂ �j/∂ �E )E=0 is

σ = e2

�

∑
KK ′

�vK [C(1)]−1
KK ′ �vK ′

(
− ∂ fK ′

∂εK ′

)
. (14)

Under open circuit conditions, no current flows, and �E =
−S �∇T , where S is the Seebeck coefficient,

S = e

σ�

∑
KK ′

�vK [C(1)]−1
KK ′ �vK ′

εK ′ − μ

T

(
− ∂ fK ′

∂εK ′

)
. (15)

V. SECOND ORDER IN �E AND �∇T

Here is the equation for F (2):

∂F (2)
K

∂t
= e �E

h̄
· ∂F (1)

K

∂�k − �vK · ∂F (1)
K

∂T
�∇T

−
∑

K ′
C(1)

KK ′F
(2)

K ′ −
∑

K ′,K ′′
C(2)

KK ′K ′′F
(1)

K ′ F (1)
K ′′ , (16)

where Ĉ(2) is the part of the collision term that is quadratic
in F (1)

K = FK − fK . A referee pointed out correctly that Joule
heat causes �T ∝ E2 which causes a shift ∝ ∂nQ/∂T × E2

in the equilibrium Bose distribution. This introduces a cor-
rected electron-phonon scattering term −∑

K ′ �C(1)
ep,KK ′F

(1)
K ′ in

Eq. (16). In the next section, estimates of �T are given. It is
unlikely that this additional term plays a significant role in
metals.

Equation (16) is a linear equation for the unknown function
F (2)

K . It is now necessary to invert the operator 1̂∂/∂t + Ĉ(1),
which is trickier than just inverting Ĉ(1), as was done for
F (1). However,we can calculate the Joule heat without solving
Eq. (16), using energy conservation,

du(2)

dt
= 1

�

∑
K

εK
∂F (2)

K

∂t
. (17)

Now insert the right-hand side of Eq. (16) in place of
∂F (2)

K /∂t . Only the first term contributes. The two collision
terms vanish by energy conservation, and the drift term van-
ishes by time-reversal invariance. The �k derivative of F (2)

K can
be avoided by integration by parts, which gives

du(2)

dt
= −e �E

�
·
∑

K

�vK F (1)
K = �E · σ · �E = �E · �j (1). (18)

This is the leading term in the Joule heat formula. This made
use of Eqs. (12) and (14). Note that it is not a completely triv-
ial extension of the usual first-order Boltzmann result. It in-
volves the �k derivative of the nonequilibrium distribution F (1)

K .
Third- and higher-order generalizations of Eq. (16) yield by
the same arguments the higher-order terms in the Joule heat.

VI. HEAT FLOW TO THE ENVIRONMENT

If there is no heat dissipation, temperature will increase
at a rate �j · �E/C. For a copper wire of length 1 cm and
applied voltage �V = 1 mV, using the heat capacity C at
300 K (fairly constant up to melting), the rate of increase is
0.017 K/s.

FIG. 1. Schematic of a suspended metal wire of length L, with
source and drain electrodes held at temperature T0. The temperature
shift �T (x) = T (x) − T0 is plotted versus position. Diffusive con-
duction of Joule heat out of the wire causes the parabolic curve.
Thermal contact resistance causes the shifts �TB at the boundaries
between sample and source and drain.

How does Joule heat dissipate, and what is the steady-
state temperature increase �T ? Consider the model of an
ideal metal wire, of length L and cross-sectional area A, sus-
pended between two electrodes, as in Fig. 1. The electrodes
are assumed large and serve as heat baths at the environ-
mental temperature T0. Given volumetric heating Q̇E = �j · �E ,
what is the steady-state temperature difference �T (x) =
T (x) − T0 between the wire and the environment (vacuum and
electrodes)?

There are two mechanisms, conduction to electrodes,
and radiation, that compensate for Q̇E to allow a steady
temperature. Incorporating these in rigorous Boltzmann
theory is difficult. The former requires a detailed knowl-
edge of heat-carrying quasiparticles of both sample and
electrodes and their coupling at the contacts. The latter
requires a similar understanding of the photons in vac-
uum, the electrons and phonons in the finite-size sample,
and their couplings at the surface. This section abandons
Boltzmann theory and uses simpler and more approximate
formulas.

Conductive heat loss has been studied experimentally
[17,18] in nanotubes and nanowires, using scanning thermal
microscopy and spatially resolved Raman spectroscopy. Ig-
noring radiation and assuming diffusive heat transport, the
local heat current is jth(x) = −κdT (x)/dx, for −L/2 < x <

L/2. This current is assumed uniform throughout the cylin-
drical cross section of area A = πD2/4. It (| jth|) is zero in
the middle of the wire (x = 0 as in Fig. 1), and increases
as position |x| increases, as required by energy conservation
d jth(x)/dx = Q̇E . Then, in steady state, the total rate of Joule
heat generation ALQ̇ balances the heat current A[| jth(− 1

2 L)| +
| jth( 1

2 L)|] leaving the ends of the sample. The result is sim-
pler than that of Shi et al. [17] because here the metal
sample is assumed to be suspended. The temperature varies
quadratically,

T (x) = T0 + �TC + Q̇E

2κ

[(
1

2
L

)2

− x2

]
. (19)

Here �TC is the temperature jump caused by the thermal
contact resistance, �TC = | jth(± 1

2 L)|/κC = Q̇L/2κC , where
κC is the thermal contact conductance between sample and
source or drain. Then the average temperature T̄ of the wire
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sample is

�T = T̄ − T0 = Q̇

[
L

2κC
+ L2

12κ

]
. (20)

As an example, consider a copper wire at room temper-
ature. The electrical resistivity is ρ = 1.7 μ� cm and the
thermal conductivity is κ = 385 W/m K. These agree to
10% with the Wiedemann-Franz “law” (actually an ap-
proximate formula) ρκ = L0T , where the Lorenz number
is L0 = 2.44 × 10−8 W �/K2. For an intimate, clean con-
tact to aluminum (chosen because a reliable thermal contact
study [19] is available), the thermal contact conductivity is
κC = 2.5 × 109 W/m2 K [19]. The bulk and contact con-
tributions to �T are equal when L = 6κ/κC = 0.92 μm.
Therefore, let us ignore the thermal contact resistance. Then,
surprisingly, the temperature increase [using Q̇ = σE2 =
(�V/L)2/ρ] is independent of the length and cross-sectional
area,

(�T )cond = (�V )2

12ρκ
≈ (�V )2

12L0T
. (21)

For copper at T = 300 K the temperature rise is �T = 0.013
K for a source-drain voltage �V = 1 mV.

For a cylindrical wire of length L and diameter D, the
Stefan-Boltzmann law for radiative heat loss is

Q̇rad(x) = 4ε̄

D
σS-B

[
(T0 + �Trad )4 − T 4

0

] = (�V )2

ρL2
. (22)

Here the factor 4/D is the ratio of surface area to volume
of the wire, σS-B = 5.67 × 10−8 W/m2 K4 is the Stefan-
Boltzmann constant, and ε̄ is an effective emissivity. The
emissivity of IR radiation by metals is small, anisotropic,
frequency dependent, and temperature dependent. The small
factor ω/ωp ∼ 0.008 enters, evaluated for ω at the peak of the
Planck spectrum at room temperature, using the plasma fre-
quency ωp for copper. The effective emissivity is complicated.
A sensible guess is ε̄ ∼ 0.01 [20]. The ratio of tempera-
ture increases �T caused by radiation and conduction is

then

(�T )rad

(�T )cond
=

[
3κ

4ε̄σSB

]
D

L2T 3
0

∼ (1.9 × 104 m)
D

L2

(
300 K

T0

)3

, (23)

where it is assumed that (�T )rad 	 T0.
Consider a Cu wire of length L = 1 cm and diameter

D = 1 μm (D/L2 = 1 m−1), with 1 mV applied voltage
�V and T = 300 K. Its resistance is 2.2 �, and it carries
0.46 mA of current. The temperature rise, when only ra-
diative heat loss is considered, is �T ∼ 246 K, not small
compared with T0 = 300 K. It is �T = 130 K if the Tay-
lor expansion of (T0 + �T )4 is not used. This is greater
by 104 than the temperature increase allowed by conduc-
tive cooling. Conduction is more efficient for dissipating
Joule heat in Cu wires at 300 K when L2/D � 2 × 104 m.
Radiative efficiency improves rapidly with T , and conduc-
tive efficiency worsens as 1/T . For Cu with L2/D ∼ 1 m,
to make radiation as effective as conduction requires T0 ∼
3000 K (∼8000 K, except that emissivity ε̄ increases as
the peak of the Planck spectrum shifts upward with rising
T0.)

VII. SUMMARY

Joule heating arises naturally when a nonvanishing ∂F/∂t
term is included in the Boltzmann equation. To include Joule
heating requires solving the Boltzmann equation to at least
second order in �E . For idealized systems best described by
Boltzmann theory, if electrical current is not too high, the
system is in a “quasi-steady state,” but not a true steady state.
Energy density slowly increases at the rate �j · �E . This is true
to all orders in �E even though �j will have parts nonlinear in �E .
If analysis in a true steady state is desired, then there should
be an external heat bath coupled to the system. This is not easy
in Boltzmann theory, without simplified approximations.
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