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ABSTRACT

Scattering-type scanning near-field optical microscopy (s-SNOM) has been widely used to characterize strongly correlated electronic, two
dimensional, and plasmonic materials, and it has enormous potential for biological applications. Many of these materials exhibit anisotropic
responses that complicate the extraction of dielectric constants from s-SNOM measurements. Here, we generalize our recently developed
approach for retrieving the near-field scattering signal from isotropic systems and apply it to anisotropic dielectrics. Specifically, we
compare our theoretical results with experimental measurements on modestly anisotropic sapphire that exhibit strong resonances at the
infrared frequency range. Good agreement with the experimental result is found. Our result is important for understanding the near-field
response of low damping, anisotropic polaritonic states in dielectric media.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039632

I. INTRODUCTION

Scattering-type scanning near-field optical microscopy (s-SNOM)
has become an extremely useful tool for sample characterization
during the past two decades.1–4 The confined near-field tip-sample
interaction effectively probes a sample volume in the order of
103 nm3–105 nm3 under a metallic tip with height h, tip and base
radii a and b, which enhances the incoming light. There have been
extensive studies on the topic of understanding the scattered near-field
signal on homogeneous samples.5–9 A current important direction of
application is to solid-state systems including strongly correlated mate-
rials,10 two dimensional van der Waals films,11 and most biological
samples,12 which exhibit anisotropic dielectric properties due to uni-
directional lattices or structural heterogeneity. Although a model based
on the point-dipole approximation for the anisotropic sample having
cylindrical symmetry with respect to the normal direction of the
sample has been proposed,13,14 a rigorous theoretical treatment of the
near-field signals on anisotropic materials without the cylindrical sym-
metry and with realistic tip geometry is still unavailable. In these
systems, the near-field scattering spectrum can be quite different from

its far-field counterpart where the tip-sample interaction is not present
and the light momentum is effectively zero.15

We recently developed a first principles calculation to treat the
scattering that takes into account singularities from the sharp
conical tip and found better agreement with experimental results
for the near field signal than those obtained with state-of-the-art
numerical and analytical models.9 Here, we generalize our result to
anisotropic materials and examine situations where there is no
cylindrical symmetry in the sample plane. We use sapphire
(Al2O3), which is hexagonal and exhibits a uniaxial anisotropic
dielectric tensor (ϵa ¼ ϵb = ϵc) in the mid-infrared (IR) regime.
The near-field scattering signal and its dependence on the relative
orientation between the incoming field with respect to the principal
axis are calculated and compared to experiments with ultra-
broadband nano-IR spectroscopy. Good agreement is found.

II. BACKGROUND

Our experimental setup is illustrated in Fig. 1. For our tip
h ¼ 70 μm, b ¼ 20 μm, a ¼ 20 nm. The incoming field is at an
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angle of 60� with respect to the sample surface normal, which we
denote as the z axis. We denote the in-plane positions by cylindri-
cal coordinates (r, f). The total incoming field at the tip is a sum
of the external plane waves of wave vector k and the reflected light
from the sample, that is,

Ein(r, f, z) ¼ Eext(r, f)e
ikzz þ Er(r, f)e

�ikzz: (1)

The fields can be expanded in terms of cylindrical vector fields
with different angular momentum m for the f dependence. This
total field induces a time-dependent charge Q at the atomic force
microscope (AFM) tip at a distance d ¼ d0(1� cosΩt)þ dm above
the film. The AFM is operating in the tapping mode. d0 � 50 nm is
the tip oscillation amplitude. Ω � 250 kHz is the tip oscillation fre-
quency. dm � 1 nm is the minimum tip-sample distance. The radi-
ation from this charge and its image gives rise to the experimental
signal. In the experiment, the electric field is in the plane of inci-
dence (p-polarized). There are electric field components along the
sample surface and along its normal due to the finite angle of
incidence. The properties of plane waves and their reflection in
anisotropic systems are described in Appendix A. The ratio of
the reflected to the external field at the air-sapphire interface is
given by

Er=Eext ¼ kz1 � kz2=hϵ planei
kz2=hϵ planei þ kz1

: (2)

For m-cut (c-cut) sapphire, hϵ planei ¼ ϵc cos2 fþ ϵa sin2 f
(hϵ planei ¼ ϵa), f is the angle between the planar component of
the electric field and the crystal c-axis. In terms of the wave vector
kplane parallel to the plane,

k1z ¼ (ω2 � k2plane)
1=2

:

For m-cut sapphires,

k2z ¼ (ϵcω
2 � k2planehϵ planei=ϵa)1=2:

For c-cut sapphires,

k2z ¼ (ϵaω
2 � k2planeϵa=ϵc)

1=2
:

The reflected light is sensitive to the orientation of the sample,
which is particularly significant when close to a sharp plasmon res-
onance where the denominator on the right hand side of Eq. (2),
kz2=hϵ planei þ kz1, is small [see Eq. (A4)]. Normally, the reflection
coefficient is not strongly frequency dependent so its effect can be
absorbed as a renormalized incoming field. For sapphire, there is a
strong resonance and the effect of the reflected wave has to be
explicitly included.

We describe the interaction between the tip and an anisotropic
sample, which can be described in terms of an image charge. This
image charge for a cylindrically symmetric anisotropic case was
studied by Mele.18 We next describe how to generalize this result
for the case where there is no in-plane cylindrical symmetry. We
write the electric fields in terms of their Fourier components as
E(r, t) ¼ Ð

dq=(2π)3E(q)ei(q�r�ωqt) and consider the scattering of the
EM wave emitted by the tip charge from a planar sample surface
with a normal in the z direction. Let the principal axis of the
sample be x, y, and z with dielectric constant ϵi with i ¼ x, y, z.
The incoming EM field induces a charge Q at the AFM tip at a dis-
tance d above the sample. Similar to the isotropic case, this charge
induces an image charge βQ at a distance d below the sample
surface. The calculation for β for the anisotropic case is described
in Appendix B. It can be obtained similar to that in the calculation
of the reflection of light by matching the tangential electric and the
normal displacement fields at the interface except that the

FIG. 1. Schematic representation of the scattering near-field setup. The total incident field on the tip comes from both the direct incidence and secondary surface reflec-
tion. a, b, and c denote the crystal axis of sapphire. The dashed line indicates the direction of the electric field in-plane components. The unit cell of sapphire is also
shown with the m and c planes indicated. For c-cut sapphire, the crystal c axis is along z.
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incoming field is not a plane field but that due to the point charge.
We found that

β ¼ (1� hϵi)=(1þ hϵi), (3)

hϵi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϵ planeiϵz

q
: (4)

Here, hϵ planei ¼
Ð 2π
0 df=(2π)(ϵx cos2 fþ ϵy sin2 f). Equation (4) is

in agreement with the result from the method of images in the iso-
tropic case and in the case with cylindrical symmetry.18 This
average value hϵ planei is independent of the angle of the incident
field because the induced charge at the tip comes from the m ¼ 0
mode and is an average over all in plane directions.

We have previously investigated the scattering of EM waves from
the tip using basis functions obtained from a conformal mapping
between a cone and an annulus.9 This is recapitulated in Appendix C.
In our study, we find that the time-dependent signal S(t) is propor-
tional to the m ¼ 0 angular component of the charge density σm¼0 at
the tip, which, in turn, is proportional to the incident field on the
cone: σm¼0 ¼ tE, where tE ¼ tm¼0Em¼0,þkz þ t*m¼0Em¼0,�kz , for some
complex function t. For our present case, the tip height is comparable
to the wavelength. We have calculated9 the function tm¼0 without
making the assumption of a uniform external field. We found that the
time dependent s-SNOM signal is given by9

S(t)e�iωt / tE(1þ β)cos(Ωt)=[1� βI(2d)]: (5)

Here, I(2d) ¼ hEczi is the normalized z component of the Coulomb
electric field from the image charge averaged over the tip, which is at

a distance 2d in the normal direction,

I(2d) ¼
ð
df

ðR2

0
r0dr0

ða
0
rdrEcz=(πa

2): (6)

Here, Ecz ¼ 2d[4d2 þ r2 þ r02 � 2rr0 cosf]3=2 and R2 is the size of
the sample. In practice, for the r0 integral, the contribution for r0 � a
is very small. The numerical result for I(2d) is shown in Fig. 2. For
2d � a, I(2d) � 1=2: For 2d � a, I(2d) � a2=(16d2): Our
numerical results agree with these limits. In our calculation, we
find that the real part of tm¼0 is small. Thus, t*m¼0 � �tm¼0,
tE � tm¼0(Eext

m¼0 � Er
m¼0). The effect of a reflected wave has been

discussed,14 but the wave was assumed to be uniform over the tip and
the different scattering of the incident and the reflected wave from the
tip has not been included.

III. RESULTS

Using as input experimental values of the dielectric constants,
we have studied the case of m-cut sapphire where the c-axis is in
the plane of the sample. In Fig. 3, we showed the experimental
(symbols) and theoretical (lines) results for the amplitude S2 of the
near-field signal demodulated at the second harmonics of the tip
taping frequency as a function of incident light frequency for
f ¼ 0 and π=2. The agreement is quite good. There is some struc-
ture in the theoretical results at f ¼ 0 at around 400 1/cm. The
signal is probably too small to be resolved experimentally. We
found that the dependence on f comes from the dependence of
the reflected field Er on f in Eq. (2). For comparison, we have
also shown results using the finite dipole model7 (FD) with two
different choices of the effective dielectric constant.

FIG. 2. Integral I as a function of the normalized distance d=d0.

FIG. 3. Experimental and theoretical amplitude S2 as a function of frequency
for m-cut sapphire. Also shown are results for the finite dipole (FD) model with
effective dielectric constants of ϵa and (ϵcϵa)

1=2.
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At frequencies slightly above 800 1/cm, we find a peak in S2 in
Fig. 3 from our calculation. Experimentally, this peak seems to have
shifted to a lower frequency. We examine the dielectric constant at
frequencies where there is a disagreement between theory and

experiment and find that at these frequencies in our calculation, we
have used experimental dielectric constants ϵ � �1 [and Im(ϵ) is
small], which is the condition for a sharp surface plasmon reso-
nance of large wavevector. Values of ϵa, ϵc, and hϵi ¼ ffiffiffiffiffiffiffiffiffi

ϵaϵc
p

are
shown in Fig. 4. The corresponding βs are shown in Fig. 5. Close
to the resonance β is large.

Sapphire exhibits an effective phonon–polariton resonance,
which strongly couples with the photonic states at the tip. The
experimental dielectric constants used in our calculation are for
long wavelengths, whereas our experimental measurement corre-
sponds to a length of the order of the tip size. This is one possible
reason that can shift the resonance frequency. Of course, our calcu-
lation can be used to extract from the experimental result what the
dielectric constant really is.

We have examined other possible sources of the disagreement.
We have assumed that the tip vibration is independent of the mea-
surement but the vibration can be coupled to the surface plasmon.
We have estimated the force between the induced tip charge and its
image and found that it is indeed much less than the cantilever
force. More precisely, the intensity of the laser is within mW range,
with a focal spot of about 20 μm for the laser beam. From the
Poynting vector, we found that the external EM field Eext is thus of
the order of 14� 103 V=m. From this, we can estimate the induced
charge Q at the tip and the average force between the tip and its
image FE ¼ hQ2=(4πϵ0r2)i. We get FE � 10�3 pN. This estimate is
much less than the force on the cantilever, which is in the pN range.

FIG. 4. Dielectric constant ϵa, ϵc , and hϵi ¼ ffiffiffiffiffiffiffiffiffi
ϵaϵc

p
.

FIG. 5. The response function β for the dielectric constant in Fig. (4). Also shown are values of β for c cut sapphire where the geometric mean in Eq. (4) is not taken.
These curves are labeled as raw.
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A. Minimum tip height dependence

A fitting parameter in our calculation is the minimum dis-
tance of the tip above the sample, dm. We found that our result can
change as this value is changed. Physically, in Eq. (5), if the imagi-
nary part of β is small and the real part is sufficiently large, the
denominator on the right hand side can become zero as β
approaches 1=I(2d). The value of dm determines when this occurs.

In Fig. 6, we show experimental results for the amplitude S2 of
the near-field signal demodulated at the second harmonics of the
tip taping frequency as a function of incident light frequency for
the c-cut sapphire obtained in an earlier experiment. Also shown is
the theoretical result labeled as “cz” we obtained using ϵ from
Eq. (4) and a minimum height different from that in the study of
the m-cut case. We have also computed S2 for isotropic media
using the dielectric constant along the c-axis. The result is shown
as the graph “iso” in Fig. 6. The agreement with the experiment
result is better for the curve “cz.”

The dependence of the s-SNOM signal on tip-sample distance
has been reported by Wang and co-workers19 on SiC. We have
explored possible dependence of the s-SNOM signal on dm for SiC.
Our result for S2 for s-SNOM as a function of frequency for SiC
for different minimum tip-sample distances is shown in Fig. 7 and
is similar to Fig. 4(b) of Ref. 19.

In conclusion, we extend our recent theoretical investigation
of the s-SNOM signal to anisotropic dielectrics and compare the
results with experimental measurements on modestly anisotropic
m-cut and c-cut sapphire that exhibit strong resonances at the
IR frequency range. Improved agreement with the experimental
result is found. The dependence on the orientation of the sample
comes from the reflection of the incoming light from the sample
onto the scattering tip. Our result depends on the minimum dis-
tance of the tip from the sample. It is important for understanding

the near-field response of low damping, anisotropic polaritonic
states in dielectric media.
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APPENDIX A: PLANE WAVE AND REFLECTION IN
ANISOTROPIC SYSTEMS

In this appendix, we consider the dispersion of a plane wave
and its reflection in anisotropic systems. Maxwell’s equations for
the plane wave can be written in terms of its wave vector in matrix
form as

ΩE ¼ 0, (A1)

where Ωij ¼ (k2δij � kikj)� ω2δijϵi. For m-cut sapphires with their
c axis along x, from ∇ � D ¼ 0, we get ϵab(kyEy þ kzEz) ¼ �kxϵcEx .
By substituting this into the x component of the wave equation (A1),
we get

� kx(kx � kxϵc=ϵab)Ex ¼ (ω2ϵc � k2)Ex ,

(k2y þ k2z)=ϵc þ k2x=ϵab ¼ ω2,

k2z ¼ ϵcω
2 � k2xϵc=ϵab � k2y :

(A2)

FIG. 6. Experimental and theoretical S2 as a function of frequency for c-cut
sapphire with the average anisotropic dielectric constant hϵi ¼ ffiffiffiffiffiffiffiffiffi

ϵaϵc
p

for β
and with one of the components of the dielectric constant ϵc alone (“iso”). FIG. 7. S2 for s-SNOM as a function of frequency for SiC for different minimum

tip height in units of the tip radius.
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When f is the angle between kplane and the x axis,

k2z ¼ ϵcω
2 � k2plane( cos

2 (f)ϵc þ ϵab sin
2 f)=ϵab:

For c-cut sapphire with the c axis along z, from ∇ � D ¼ 0, we
get ϵab(kyEy þ kxEz) ¼ �kzϵcEz . By substituting this into the z
component of the wave equation (A1), we get

�kz(kz � kzϵc=ϵab)Ez ¼ (ω2ϵc � k2)Ez ,
(k2y þ k2x)=ϵc þ k2z=ϵab ¼ ω2:

(A3)

1. Reflection

In the isotropic case,16 the ratio of the reflected and the inci-
dent field for p polarized wave is given by

Er=Ei ¼ ϵ2k1z � ϵ1k2z
ϵ2k1z þ ϵ1k2z

:

The denominator is zero when

(ϵ1ω2 � k2plane)=ϵ
2
1 ¼ (ϵ2ω2 � k2plane)=ϵ

2
2,

ω2(1=ϵ1 � 1=ϵ2) ¼ k2plane(1=ϵ
2
1 � 1=ϵ22),

ω2 ¼ k2plane(1=ϵ1 þ 1=ϵ2):

(A4)

We recover the surface plasmon dispersion.17 This can be general-
ized to anisotropic systems.

We consider the reflection of the EM wave from air (labeled
by subscript 1) into the anisotropic system (subscript 2). The inci-
dent and the reflected wave are denoted by additional subscripts of
þ and �. We get, from ∇ �D ¼ 0, kx1Dx1 þ ky1Dy1 þ kzi(Dz1þ �
Dz1�) ¼ 0: In terms of the electric field, this becomes

Ez1þ � Ez1� ¼ �kplaneE plane=kz1: (A5)

Inside the sapphire, we have kx2Dx2 þ ky2Dy2 þ kz2Dz2 ¼ 0: If the
field is in the plane of incidence, in terms of the electric field, we
get for m-cut sapphires

Ez2 ¼ �kplanehϵiEplane=(kz2ϵab),

where hϵ planei ¼ cos2 fϵc þ sin2 fϵab: For c-cut sapphires, we get

Ez2 ¼ �kplaneϵabE plane=(kz2ϵc):

Note that because the component of the electric field tangential to
the surface is continuous, Eplane is the same on both sides.
Combining with Eq. (A5), we get for m-cut sapphires

Ez1þ � Ez1� ¼ kz2ϵabEz2=kz1=hϵ planei (A6)

and

Ez1þ � Ez1� ¼ kz2ϵcEz2=kz1=ϵab (A7)

for c-cut sapphires.

Continuity of Dz implies for m-cut sapphires

Ez1þ þ Ez1� ¼ ϵabEz2 (A8)

and for c-cut sapphires,

Ez1þ þ Ez1� ¼ ϵcEz2: (A9)

Eliminating Ez2, we get for m-cut sapphires

Ez1þ � Ez1� ¼ kz2(Ez1þ þ Ez1�)=kz1=hϵ planei

and for c-cut sapphires,

Ez1þ � Ez1� ¼ kz2(Ez1þ þ Ez1�)=kz1=ϵab:

This gives the ratio of the reflected to the incident electric field for
m-cut sapphires given in Eq. (2),

Er=Eext ¼ Ez1�=Ez1þ ¼ kz1 � kz2=hϵ planei
kz2=hϵ planei þ kz1

(A10)

and for c-cut sapphires,

Er=Eext ¼ Ez1�=Ez1þ ¼ (kz1 � kz2=ϵab)=(kz2=ϵab þ kz1): (A11)

The resonance condition when the denominator is zero for m-cut
sapphires is given by

kz2=hϵ planei þ kz1 ¼ 0:

This can be written as

ω2[ϵab=hϵ planei2 � 1) ¼ k2plane[1=(hϵ planeiϵc)� 1]:

APPENDIX B: IMAGE CHARGE IN ANISOTROPIC
SYSTEMS

In this section, we describe the detail of our study of the inter-
action between a point charge and an anisotropic dielectric. We
consider the scattering of the EM field from the tip charge by a
planar sample surface with a normal in the z direction. Let the
principal axis of the sample be x, y, and z with dielectric constant
ϵi with i ¼ x, y, z.

The incoming EM field induces a charge Q at the AFM tip at
a distance d above the sample. For an isotropic system, this charge
induces an image charge βQ with

β ¼ (ϵ� 1)=(ϵþ 1),

at a distance d below the surface of the sample. We write the
electric potential in terms of their Fourier components as V(r, t)
¼ Ð

dq=(2π)3V(q)ei(q�r�ωqt): After the qz integration in the present
anisotropic case, the potential due to the charge at the tip is still

V(r, z) ¼ Qπ
ð
d2qe(�qjd�zjþiq�r)=q:
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The scattered field can be written as that due to an image potential as

Vb(r, z) ¼ π

ð
d2qF(q)e(�qzþiq�r)=q

in terms of a function F to be determined by the boundary condi-
tions. Inside the dielectric Coulomb’s law states ∇ � D ¼ ρ=ϵ0: In the
Fourier space, the corresponding potential can be written in terms of
a function K 0(q) as V ¼ Ð

d3qeiq�rK 0=[q2hϵ planei þ q2zϵz]: We can do
the qz integration and obtain, in terms of a function K(q),

V,(r, z) ¼ π

ð
d2qK(q)e(q[hϵ planei=ϵz]0:5zþiq�r)=q:

hϵ planei ¼ ϵx cos2 fþ ϵy sin2 f. From the continuity of the tangen-
tial component of E we get Vb þ V ¼ V,: This implies

F þ Q0 ¼ K , (B1)

where Q0 ¼ Qexp(�qd): From the continuity of Dz , we get

F(1þ hϵi) ¼ Q0(1� hϵi), (B2)

where

hϵi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϵ planeiϵz

q
: (B3)

F can be interpreted as the image potential due to an image charge
βQ at ri ¼ �dez , where

β ¼ (1� hϵi)=(1þ hϵi): (B4)

After the angular integration over the direction of the wave vector is
carried out, we arrive at the expression quoted in the text.

APPENDIX C: OUR APPROACH

We recapitulate our approach of calculating the s-SNOM
signal in this appendix. We are interested in the current flow on a
finite surface caused by an external electromagnetic (EM) wave. We
assume that the surface of the cone to be a film that is thin enough
that there is no current in the direction perpendicular to it. The
current density j in the presence of an external electric field Eext is
governed by the equation

ρjþ Eem ¼ Eext : (C1)

where ρ is the resistivity, Eem is the electromagnetic field generated
by the current. Eem can be obtained from the integral form of
Maxwell’s equation. It is a sum of a capacitive and an inductive
term: Eem ¼ Ec þ EL. For a time dependence of eiωt these terms can
be expressed in terms of the current density as

EC ¼ i=(ωϵ0)∇
ð
dr0G(r � r0)∇0 � j(r0), (C2)

EL ¼ �iμ0ω
ð
dr0j(r0)G(r � r0), (C3)

where the bare Green’s function G is given by

G ¼ exp(ik0jr � r0j)=4πjr � r0j: (C4)

In the quasi-static limit, the radiative correction is not included, G
is approximated by G0 ¼ 1=4πjr � r0j.

We impose the boundary condition of no current flow
perpendicular to the boundary of the film with a large boundary
resistivity ρs which we take to approach infinity. The total resistivity
ρ is a sum of this surface term and a metal resistivity ρ0. Because of
the surface resistivity, the normal surface current densities js
approaches zero. We define boundary electric fields Es ¼ jsρs as the
products of the normal components of the current at the boundar-
ies js and ρs. They behave like Lagrange multipliers. Their values
are determined from the condition that the normal boundary cur-
rents become zero. Physically, as the external field is applied, the
current is stopped at the boundary and charges of surface density
σs are getting accumulated. An electric field is generated until it
reaches a value that adds up with other external fields to oppose
further current arriving there.

For the cone, there are two boundaries, the base and the tip.
We call the surface field at the tip in the direction of the cone axis
Es2. This field is completely determined by the incoming field at
the cone and the boundary condition of zero current. In the pres-
ence of an additional surface such as sapphire, the boundary field
Es2 is now a sum of a field Esa from the surface charge of density σs

at the tip and a field Esb from the image charge density. �βσs2 at a
distance �d below the surface,

Es2 ¼ Esa þ Esb: (C5)

From Gauss’s law Esa ¼ σs=2ϵ0, Esb � �βσsI(2d)=ϵ0, where I
defined in Eq. (6) is the averaged field at the tip from the image
charge. From Eq. (C5), we get

σs ¼ 2ϵ0Es2=[1� 2βI(2d)]: (C6)

In our formulation, the surface field is determined from the zero
normal surface current condition, the tip charge density is then
determined from the surface field. It is the tip charge density that
determines the modulated scattered far field that is measured
experimentally and shown in Eq. (5).

1. Solution

In our approach, we represent the currents and the fields of
interest not in terms of finite elements on a mesh but in terms of a
complete set of orthonormal basis functions. As we discussed
before,20,21 the impedance matrix becomes nearly diagonal and the
convergence is very fast. For very simple cases, the basis functions
are the well known special functions. For a given finite surface,
there is a harmonic conformal map that maps it into an annulus
with the corresponding genus.23 We construct the basis function
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for this surface from the basis function of a circular annulus with
the conformal harmonic map.

The electromagnetic field Eem can be represented as
Eem ¼ Z0j, where the “impedance” matrix Z0 is just the representa-
tion of the Green’s function in this basis. More specifically,

Z0 ¼ �iωL� ic2=(ωC), (C7)

where for any basis function X, Y,

LXi,Yj ¼ μ0

ð
drdr0[Xi(r)]

* � Yj(r
0)G(r, r0) (C8)

(1=C)Xi,Yj ¼
ð
drdr0[Xi(r)]

* � ∇∇0 � Yj(r
0)G(r, r0): (C9)

We found that when the basis functions are orthonormal, the off-
diagonal elements of the impedance matrix is much less than the
diagonal one.20,21 Furthermore, the magnitude of the impedance
increases rapidly. These greatly facilitate the convergence of the sol-
ution and provide for a much better understanding of the physics.

In this notation, the circuit equation becomes

Zj ¼ Eext þ Es, (C10)

where Z ¼ Z0 þ ρ0. We next discuss the construction of the new
basis states for the cone.

2. Basis functions

A point on the cone is characterized by its angular coordinates
r and f, whereas a point inside the annulus is characterized by the
cylindrical coordinate R and Φ. Mapping between cones and disks
was studied in the context of map construction.22 We generalized
this approach and found that the above two surfaces can be
mapped into each other via a conformal harmonic map,

R ¼ r1= sin θ , Φ ¼ f:

Under this transformation, the distance on the cone dr2= sin2 θ þ
df2r2 can be written as

ds2 ¼ R2 sin θ�2(dR2 þ R2dΦ2):

The Jacobian of the transformation is thus given by ρ ¼ R2 sin θ�2:
As expected, the Jacobian exhibits a divergence at R ¼ 0:

With the circular annulus basis functions denoted by X, we
construct with functions α and β orthonormal vector basis func-
tions on the cone given by

cX ¼ αXr[R(r)]e1 þ βXΦe2, (C11)

where the tangent vectors on the surface of the cone are in the
cylindrical basis (r, f, z): e1 ¼ 1=(1þ h2)1=2er � h=(1þ h2)1=2ez ,
e2 ¼ ef. To obtain an orthonormal basis, the requirement is that
α ¼ β ¼ 1=ρ1=2, where ρ is the Jacobian of the transformation.
With this choice, the new basis functions are orthonormal with the

corresponding measure,

ð
d2r(cXn)

* � cYm ¼
ð
d2Rρjαj2Xn � Ym ¼ δX,Y :

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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